
Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

1 / 37

Pseudorandom Generators in
Proof Complexity

Based on the 2001 article of the same name by
Alekhnovich, Ben-Sasson, Razborov, & Wigderson

N. Hayek &
B. Kyle

April 1st 2025

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

2 / 37

Pseudorandom Generators

Definition (Generator)

A mapping Gn : {0,1}n→ {0,1}m is called a generator.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

3 / 37

Pseudorandom Generators

Definition (Generator)

A mapping Gn : {0,1}n→ {0,1}m is called a generator.

Definition (Pseudorandomness)

A deterministic generator is pseudorandom if no efficient algorithm can
differentiate between the probability distributions of Gn(x⃗) and y⃗, where
x⃗ and y⃗ are truly random.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

4 / 37

Pseudorandom Generators

Definition (Generator)

A mapping Gn : {0,1}n→ {0,1}m is called a generator.

Definition (Pseudorandomness)

A deterministic generator is pseudorandom if no efficient algorithm can
differentiate between the probability distributions of Gn(x⃗) and y⃗, where
x⃗ and y⃗ are truly random.

Definition (Hardness)

Let P be a proof system. Let b ∈ {0,1}m be arbitrary. A generator is hard
for P if P cannot prove in polynomial size that b < Im(Gn).

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

5 / 37

Pseudorandom Gn

x⃗ ∈ {0, 1}n

y⃗ ∈ {0, 1}m
Uniformly
Random (God)

(I′m a polynomial algorithm)

P (Gn(x⃗)) = 1 P (y⃗) = 1

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

6 / 37

Hardness of Gn

(I′m a polynomial P −proof)

∃ x⃗ : P (Gn(x⃗)) = b

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

7 / 37

Motivation 1

▷ If no proof system can deduce the most basic property of
Gn efficiently (notably, what is in its image), then it
certainly can’t distinguish between the image of Gn and a
proper random distribution efficiently.

Hard in Especially Strong System P
?

=⇒ Pseudorandom

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

8 / 37

Motivation 1

▷ If no proof system can deduce the most basic property of
Gn efficiently (notably, what is in its image), then it
certainly can’t distinguish between the image of Gn and a
proper random distribution efficiently.

Hard for Especially Strong System P
?

=⇒ Pseudorandom

▷ Conversely, if Gn is pseudorandom, it is hard for most
proof systems (if there existed an algorithm that could
efficiently prove b < Im(Gn), we could use this to distinguish
Gn from random, and break the generator).

Pseudorandom
?

=⇒ Hard for all P

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

9 / 37

Motivation 2

▷ The existence of hard generators for P (in particular, when
m > n) provides lower bounds for a class of tautologies in P .

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

10 / 37

Tseitin Generators

Example

Tseitin tautologies provide a good context for constructing hard
generators. Let G be a connected graph, with |E| = n and |V | = m. Let x⃗ be
a vector of variables on E. Enumerate V arbitrarily v1, ...,vm. Then we
have the generator

TG : {0,1}n→ {0,1}m x⃗ 7→


⊕e∋v1xe

...
⊕e∋vmxe


where ⊕ is the typical XOR (i.e. ≡2 1). One can show that σ⃗ ∈ {0,1}m is
not in the image of TG ⇐⇒ ⊕mi=1 σi = 1 (i.e. “odd”). When is it hard,
then, for a proof system to show σ⃗ < Im(TG)?

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

11 / 37

TG hard ≡ Tseitin hard to refute

Example (cont.)

Fix σ⃗ which is odd. Then
TG(x⃗) = σ⃗

cannot happen, since σ⃗ < Im(TG). In other words, there is no satisfying
assignment to x⃗ : TG(x⃗) = σ⃗ , and so the tautologies

⊕e∋v1xe = σ1

...

⊕e∋vmxe = σm

are unsatisfiable.

We know of some good (exponential) lower bounds on refuting the
Tseitin tautologies, e.g. in resolution. We conclude that, in these systems,
TG is a hard generator, since the choice of mapping σ⃗ is arbitrary when
proving such lower bounds.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

12 / 37

Main Example: Nisan-Wigderson Generators

Let gi : x⃗→ {0,1} be a function on n-dimensional vector of variables
⟨x1, ...,xn⟩. We call each gi a base function.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

13 / 37

Main Example: Nisan-Wigderson Generators

Let gi : x⃗→ {0,1} be a function on n-dimensional vector of variables
⟨x1, ...,xn⟩. We call each gi a base function.

(Caveat: Fix a binary matrix A of dimensions m×n. We impose that gi depend
only on variables xj for which the j-th entry in the i-th row is 1.)

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

14 / 37

Main Example: Nisan-Wigderson Generators

Let gi : x⃗→ {0,1} be a function on n-dimensional vector of variables
⟨x1, ...,xn⟩. We call each gi a base function.

(Caveat: Fix a binary matrix A of dimensions m×n. We impose that gi depend
only on variables xj for which the j-th entry in the i-th row is 1.)

Then define
Gn(x⃗) =

〈
g1(x⃗), ..., gm(x⃗)

〉
These are believed to be pseudorandom in certain contexts.

Subject to conditions on A and gi , we will show that these are hard for
some standard proof systems.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

15 / 37

Propositionalizing NW Generators

Definition (Matrix Restriction)

Ji (A) = {j ∈ [n] : aij = 1} Xi (A) = {xj : j ∈ Ji (A)}

Above, we related the hardness of Tn to the Tseitin tautologies. We are
interested now in the hardness of NW generators, i.e. refuting the
tautologies 

g1(x⃗) = 1
... Vars(gi) ⊆ Xi (A)

gm(x⃗) = 1

(1)

in some common proof systems.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

16 / 37

Propositionalizing NW Generators

Definition (Matrix Restriction)

Ji (A) = {j ∈ [n] : aij = 1} Xi (A) = {xj : j ∈ Ji (A)}

Above, we related the hardness of Tn to the Tseitin tautologies. We are
interested now in the hardness of NW generators, i.e. refuting the
tautologies 

g1(x⃗) = 1
... Vars(gi) ⊆ Xi (A)

gm(x⃗) = 1

(1)

in some common proof systems.

(Caveat: we later impose hardness conditions on gi . By allowing these conditions
to be satsified by gi ⇐⇒ they are satisfied by gi , it is sufficient to consider (1), i.e.
b = ⟨1, ...,1⟩, for the sake of refuting b⃗ < Im(Gn) for any b⃗.)

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

17 / 37

Background Definitions

We’re interested in propositionalizing (1). In our paper, circuit-based,
linear, and functional encodings are provided. We will focus on the
latter.

Definition (Extension Variable)

Fix i ∈ [m]. Let f be a boolean function for which Vars(f) ⊆ Xi (A). Then
yf is an extension variable for f .

Denote by Vars(A) = {yf : ∃i ∈ [m] : Vars(f) ⊆ Xi (A)} all possible extension
variables (and hence functions) on the variables Xi (A) : i ∈ [m].

Example

Let A =

1 0 1
0 1 0
1 0 0

. Then Vars(A) is in correspondence with all boolean

functions on a subset of {x1,x3} or {x2}.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

18 / 37

More definitions...

Definition (Vars(A)→ x⃗)

Let C = y
ε1
f1
∨ · · · ∨ yεkfk be a clause on Vars(A). Then

||C|| := f
ε1

1 ∨ · · · ∨ f
εk
k

is a boolean function on the variables x⃗.

Example

With A as above, let f1 = x1 ∧ x3 and f2 = x2. Let C = yf1
∨ yf2

. Then

||C|| = x1 ∧ x3 ∨ x2 = x1 ∨ x3 ∨ x2

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

19 / 37

The Functional Encoding

Let g1, ..., gm be functions on x⃗ which constitute a generator Gn. Note that
Vars(gi) ⊆ Xi (A). We encode (1) as follows:

Definition (Functional Encoding of NW Generator Hardness)

Fix A. Let τ(A,Gn) denote the collection of clauses of the form
C = y

ε1
f1
∨ · · · ∨ yεkfk for which

Vars(fi) ⊆ Xi (A) i = 1, ..., k and gi ⊨ ||C||

τ(A,Gn) is the functional encoding of (1).

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

20 / 37

The Functional Encoding is Correct

Theorem (τ(A,Gn) Corresponds with (1))

τ(A,Gn) is satisfiable ⇐⇒ (1) has a mapping that satisfies it.

Proof.

(⇐=) Let x⃗0 be a solution to the system
g1(x⃗0) = 1

...

gm(x⃗0) = 1

Consider fy ∈ Vars(A). Let ρ : Vars(A)→ {0,1} be the truth assignment
yf 7→ f (x⃗0). Let C ∈ τ(A,Gn), i.e.

C = y
ε1
f1
∨ · · · ∨ yεkfk with Vars(fj) ⊆ Xi (A) ∀j, some i

Since gi ⊨ ||C||, and gi (x⃗0) = 1, we have ||C|| = f
ε1

1 ∨ · · · ∨ f
εk
k = 1, so

∃i : f εii (x⃗0) = 1. Therefore, ρ will satisfy y
εi
fi

, and hence C.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

21 / 37

The Functional Encoding is Correct

Proof.

(=⇒) Let ρ be an assignment on Vars(A) satisfying τ(A,Gn). Define

x⃗0 =


yx1
...

yxn


Note that the formula xi belong to Vars(A) so long as we have no zero
columns in A (we will impose this later). One can show by induction that
ρ(yf) = f (x⃗0) as above. Since Vars(gi) ⊆ Xi (A) and clearly gi ⊨ gi , we have
gi ∈ τ(A,Gn) as a clause. ρ is satisfying for τ(A,Gn), so ρ(gi) = 1 (as a bit
assignment). But then ρ(gi) = gi (x⃗0) = 1, as desired.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

22 / 37

Main Result: τ(A,Gn) Width Bounds in
Resolution

Without yet defining r, s, c ∈R, (r, s, c)-expanders, or ℓ-robustness, we
state the following theorem:

Theorem (Width of τ(A,Gn) in Resolution)

Let A ∈Mm×n({0,1}) be an (r, s, c)-expander, and let gi be ℓ-robust for
i = 1, ...,m. Let c+ ℓ ≥ s+ 1. Then

wRes(τ(A,Gn)) >
r(c+ ℓ − s)

2ℓ
= Ω(r)

The foreign terms constitute the “hardness conditions” on A and gi . We
will define the following

1 (r, s, c)-expanders: these are sparse matrices which generalize
well-connectedness for graphs. In such a way, tight groupings of
variables between base functions are discouraged, preventing
localized contradictions.

2 ℓ-robust functions gi resist partial assignments.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

23 / 37

Hardness of A↔ (r, s, c)-expanders

Definition ((r, s, c)-expanders)

Let A ∈Mm×n({0,1}). For a set of rows I ⊆ [m], let ∂A(I) (called the
boundary of I) denote all columns which, when restricted to I , contain
one “1.”

Then, A is called an (r, s, c)-expander if |Ji (A)| ≤ s and, for all choices I as
above, |I | ≤ r =⇒ |∂A(I)| ≥ c|I |.

What does this say: first, the number of 1s in any given row is bounded
(by s). This allows sparseness.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

24 / 37

Hardness of A↔ (r, s, c)-expanders

Definition ((r, s, c)-expanders)

Let A ∈Mm×n({0,1}). For a set of rows I ⊆ [m], let ∂A(I) (called the
boundary of I) denote all columns which, when restricted to I , contain
one “1.”

Then, A is called an (r, s, c)-expander if |Ji (A)| ≤ s and, for all choices I as
above, |I | ≤ r =⇒ |∂A(I)| ≥ c|I |.

What does this say: first, the number of 1s in any given row is bounded
(by s). This allows sparseness. Secondly, up to a selectivity threshold (r),
we may lower bound the density (c) of boundary columns in I by a linear
factor.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

25 / 37

Hardness of A↔ (r, s, c)-expanders

Definition ((r, s, c)-expanders)

Let A ∈Mm×n({0,1}). For a set of rows I ⊆ [m], let ∂A(I) (called the
boundary of I) denote all columns which, when restricted to I , contain
one “1.”

Then, A is called an (r, s, c)-expander if |Ji (A)| ≤ s and, for all choices I as
above, |I | ≤ r =⇒ |∂A(I)| ≥ c|I |.

What does this say: first, the number of 1s in any given row is bounded
(by s). This allows sparseness. Secondly, up to a selectivity threshold (r),
we may lower bound the density (c) of boundary columns in I by a linear
factor. For instance, a (1,2, .5)-expander could look like:1 0 1

0 1 0
1 0 0



Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

26 / 37

Hardness of gi↔ ℓ-robustness

Our hardness condition on gi (and its motivation) is more
straight-forward:

Definition (ℓ-robustness)

A function gi is called ℓ-robust if every assignment ρ such that
gi (ρ) ∈ {0,1} (i.e. not ⋆) satisfies |ρ| ≥ ℓ.

In other words, no short assignments satisfy or dissatisfy ℓ. For instance...

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

27 / 37

Hardness of gi↔ ℓ-robustness

Our hardness condition on gi (and its motivation) is more
straight-forward:

Definition (ℓ-robustness)

A function gi is called ℓ-robust if every assignment ρ such that
gi (ρ) ∈ {0,1} (i.e. not ⋆) satisfies |ρ| ≥ ℓ.

In other words, no short assignments satisfy or dissatisfy ℓ. For instance...

Example

x1 ⊕ x2 ⊕ · · · ⊕ xn is n-robust, since we need to map all variables to
determine if the sum is ≡2 1.

Conversely, ℓ1 ∨ · · · ∨ ℓn is only 1-robust (take the assignment ℓ1 = 1).

By selecting robust (i.e. large enough ℓ) functions, we increase the
number of variable assignments a prover would need to check implicitly
(no shortcuts).

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

28 / 37

Proof of Theorem: Measure

Theorem (Width of τ(A,Gn) in Resolution)

Let A ∈Mm×n({0,1}) be an (r, s, c)-expander, and let gi be ℓ-robust for
i = 1, ...,m. Let c+ ℓ ≥ s+ 1. Then

wRes(τ(A,Gn)) >
r(c+ ℓ − s)

2ℓ

Proof. We will first define a measure µ on clauses.

Definition (µ)

For a clause C in Vars(A), µ(C) is the size of a minimal I ⊆ [m] such that:

(a) ∀yεf ∈ C ∃i ∈ I : Vars(f) ⊆ Xi (A)

(b) { gi | i ∈ I} ⊨ ||C||

Remark. µ is sub-additive: if C0 and C1 resolve to C then
µ(C) ≤ µ(C0) +µ(C1). Furthermore, µ(C) = 1 for C ∈ τ(A,Gn).

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

29 / 37

Proof of Theorem: Roadmap

Theorem (Width of τ(A,Gn) in Resolution)

Let A ∈Mm×n({0,1}) be an (r, s, c)-expander, and let gi be ℓ-robust for
i = 1, ...,m. Let c+ ℓ ≥ s+ 1. Then

wRes(τ(A,Gn)) >
r(c+ ℓ − s)

2ℓ

1 We’ll first establish a connection between µ(C) and w(C):
medium-µ clauses are wide.

2 We’ll then show that µ(⊥) is large, and therefore, by our remark,
that any resolution refutation of τ must contain a medium-µ clause
which is wide.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

30 / 37

Proof of Theorem: Claim #1

For a clause C in Vars(A), µ(C) is the size of a minimal I ⊆ [m] such that:

(a) ∀yεf ∈ C ∃i ∈ I : Vars(f) ⊆ Xi (A) (b) { gi | i ∈ I} ⊨ ||C||

Claim (#1)

For a clause C with r
2 < µ(C) ≤ r, w(C) > r(c+ℓ−s)

2ℓ .

Proof.

Let I satisfy µ(C). Let I0 ⊆ I be minimal such that (a) still holds. Then,
for, I1 := I \ I0, {gi : i ∈ I \ k} ⊭ ||C|| for any k ∈ I1.

Fix k ∈ I1. We make the sub-claim that |Jk(A)∩∂A(I)| ≤ s − ℓ. Let α be an
assignment such that gi (α) = 1 ∀i ∈ I \ k, but ||C||(α) = 0. (This exists by
the above). Then

ρ(xi) :=

α(xi) i < ∂A(I)∩ Jk(A)
⋆ otherwise

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

31 / 37

Proof of Theorem: Claim #1

cont.

ρ(xi) :=

α(xi) i < ∂A(I)∩ Jk(A)
⋆ otherwise

Let i , k be arbitrary. We claim that, if xs ∈ Vars(gi), then s < ∂A(I)∩ Jk(A),
and hence ρ is defined totally on each gi . Let xs ∈ Vars(gi). Suppose
s ∈ ∂A(I). Then s is a column in which only one “1” exists. But s ∈ Ji (A),
so s < Jk(A) for any k , i (since this would constitute a second “1”). A
similar argument shows that variables xs ∈ ||C|| are such that
s < ∂A(I)∩ Jk(A), with the additional rationale that k < I0.

=⇒ gi |ρ = 1 and C|ρ = 0. By (b), gk |ρ = 0. But gk is ℓ-robust:

=⇒ #Jk(A) \ [∂A(I)∩ Jk(A)] ≥ ℓ

=⇒ s − |∂A(I)∩ Jk(A)| ≥ ℓ =⇒ |∂A(I)∩ Jk(A)| ≤ s − ℓ

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

32 / 37

Proof of Theorem: Claim #1

cont.

To restate: so far, we have, for any k ∈ I1, the inequality

|∂A(I)∩ Jk(A)| ≤ s − ℓ

Hence, we sum up

c|I | ≤ |∂A(I)| by (r, s, c)-properties of A

≤
∑
i∈I0

|Ji (A)∩∂A(I)|+
∑
i∈I1

|Ji (A)∩∂A(I)|

≤
∑
i∈I0

|Ji (A)|+ (s − ℓ)|I1| by sub-claim above

≤ s|I0|+ (s − ℓ)|I1| by prop of A (sparseness)

= (s − ℓ)|I |+ ℓ|I0|
≤ (s − ℓ)|I |+ ℓ ·w(C)

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

33 / 37

Proof of Theorem: Claim #1

cont.

In this last step, we use |I0| ≤ w(C). Recall that I0 ⊆ I is minimal such that

(a) ∀yεf ∈ C ∃i ∈ I : Vars(f) ⊆ Xi (A)

But then I0 ⊆ {i : Vars(f) ⊆ Xi for some f ↔ yεf ∈ C}, and the magnitude

of this set is bounded by {f ↔ yεf }, which is bounded by w(C).

To restate: c|I | ≤ (s − ℓ)|I |+ ℓ ·w(C). But |I | = µ(C) > r
2 by assumption, so

w(C) ≥ (c+ℓ−s)|I |
ℓ > r(c+ℓ−s)

2ℓ .

This is the bulk of our theorem! Now that we have shown that medium-µ
clauses attain our width bound, we just need to show they exist in a
resolution proof.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

34 / 37

Proof of Theorem: Claim #2

Claim (#2)

Any resolution refutation Π of τ contains a clause C with r
2 < µ(C) ≤ r.

Proof.

We first show µ(⊥) > r. Suppose not: µ(⊥) ≤ r.

Then we arrive at the same inequalities, i.e. c · |I | ≤ (s − ℓ)|I |+ ℓ|I0|

This time, I0 is empty, and we get c ≤ s − l. But the expansion property
was that c ≥ s − ℓ + 1 ※

Now, since Π derives ⊥ from clauses Ci in τ with µ(Ci) = 1, and µ is
sub-additive, we are done.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

35 / 37

Putting It All Together

Adding Claim 1 with Claim 2 completes our lower bound on resolution
width:

wRes(τ(A,Gn)) >
r(c+ ℓ − s)

2ℓ
□

Later in the paper, it is shown that nearly all matrices satisfy c > 0.9s,
and that most functions satisfy ℓ > 0.9s. Observe that when this is true,
our bound is linear in r.

wRes(τ(A,Gn)) = Ω(r)

Note that r is bounded above my m, but can be taken to be roughly n
s .

This width lower-bound to a strong size-lower bound by the known
relation from class. In Section 4 of the paper, the method of random
restriction in Polynomial Calculus is used to extend a width lower bound
to a size one. The results are stronger bounds on the weaker linear
encoding.

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

36 / 37

Corollary: Size Lower Bound

Corollary

Let ε > 0 be an arbitrary fixed constant, A be an (r, s,εs)-expander of size
(m×n), and g1, ..., gm be (1− ε/2)s-robust functions. Then every resolution

refutation of τ(A, g⃗) must have size exp(Ω(r2

m·22s))/2s

Pseudorandom
Generators in

Proof
Complexity

N. Hayek &
B. Kyle

37 / 37

Concluding Remarks

We have strong lower bounds for both resolution and algebraic
systems in refuting (1), and the authors believe the same for
stronger systems.

These strong lower bounds on proving these tautologies imply even
stronger lower bounds on breaking the generator itself, further
affirming the strength of Nisan’s and Wigderson’s construction.

For proof systems P with the Efficient Interpolation Property, there
is an easy way of converting any computationally secure generator
to another generator which is hard for P. But in general no such
method exists.

