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Definition (Pseudorandomness)

A deterministic generator is pseudorandom if no efficient algorithm can
differentiate between the probability distributions of G,(X) and ¥, where
¥'and  are truly random.

Definition (Hardness)

Let P be a proof system. Let b € {0,1}" be arbitrary. A generator is hard
for P if P cannot prove in polynomial size that b ¢ Im(Gj,).
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P(Gy(¥) =1 P(§) =

(I'm a polynomial algorithm)
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(I'm a polynomial P — proof)
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! certainly can’t distinguish between the image of G, and a

proper random distribution efficiently.
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Motivation 1

Pseudorandom

Generatorsn. [ If no proof system can deduce the most basic property of
Complexity G, efficiently (notably, what is in its image), then it
N. Hayek & certainly can’t distinguish between the image of G, and a

proper random distribution efficiently.

Hard for Especially Strong System P = Pseudorandom

> Conversely, if G,, is pseudorandom, it is hard for most
proof systems (if there existed an algorithm that could
efficiently prove b ¢ Im(G,), we could use this to distinguish
G,, from random, and break the generator).

Pseudorandom N Hard for all P
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> The existence of hard generators for P (in particular, when
m > n) provides lower bounds for a class of tautologies in P.
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Example

Tseitin tautologies provide a good context for constructing hard
generators. Let G be a connected graph, with |E| = n and |V| = m. Let X be
a vector of variables on E. Enumerate V arbitrarily vy, ...,v;,. Then we
have the generator

N. Hayek &

B. Kyle

Desv, Xe
T :{0,1}" = {0,1}" X+

Desv,, Xe

where @ is the typical XOR (i.e. =, 1). One can show that ¢ € {0,1}" is
not in the image of Tg & 6]9?1:1 oj =1 (i.e. “odd”). When is it hard,
then, for a proof system to show ¢ ¢ Im(Tg)?
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Example (cont.)

Fix & which is odd. Then
N. Hayek & TG(JZ’):g

B. Kyle
cannot happen, since ¢ ¢ Im(Tg). In other words, there is no satisfying
assignment to ¥: Tg(¥) = &, and so the tautologies

Desv, Xe = 01

Desv,,Xe = Om
are unsatisfiable.

We know of some good (exponential) lower bounds on refuting the
Tseitin tautologies, e.g. in resolution. We conclude that, in these systems,
Tg is a hard generator, since the choice of mapping & is arbitrary when
proving such lower bounds.
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Proof We call each g; function.
Complexity <X1,...,Xn>. € call eac glabase u
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Main Example: Nisan-Wigderson Generators

1dorandom

Generators in Let gj : ¥ — {0, 1} be a function on n-dimensional vector of variables

Proof We call each g; function
ottty (x1,...,X,). We call each g; a base function.

(Caveat: Fix a binary matrix A of dimensions m x n. We impose that g; depend

only on variables x; for which the j-th entry in the i-th row is 1.)
Then define

Gn(X) = (g1 (%), -, g (X))
These are believed to be pseudorandom in certain contexts.

Subject to conditions on A and g;, we will show that these are hard for
some standard proof systems.
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JiAy={jeln]:aij=1}  Xi(A)={x;:je]i(A)}

Above, we related the hardness of T}, to the Tseitin tautologies. We are
interested now in the hardness of NW generators, i.e. refuting the
tautologies

q1(¥)=1

: Vars(g;) € X;(A) (1)
gm(¥) =1

in some common proof systems.
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Definition (Matrix Restriction)

JiAy={jeln]:aij=1}  Xi(A)={x;:je]i(A)}

Above, we related the hardness of T}, to the Tseitin tautologies. We are
interested now in the hardness of NW generators, i.e. refuting the
tautologies

g1(x) =1

: Vars(g;) € X;(A) (1)
gm(¥) =1

in some common proof systems.

(Caveat: we later impose hardness conditions on g;. By allowing these conditions

to be satsified by g; & they are satisfied by gj, it is sufficient to consider (1), i.e.
b=(1,..,1), for the sake of refuting be Im(G,) for any E.)



Background Definitions

Pseudorandom

Generators in We're interested in propositionalizing (1). In our paper, circuit-based,

. I—’rolof.t linear, and functional encodings are provided. We will focus on the
omp exi y
latter.
N. Hayek &
B. Kyle Definition (Extension Variable)

Fix i € [m]. Let f be a boolean function for which Vars(f) C X;(A). Then
Vf is an extension variable for f.

Denote by Vars(A) = {ys : 3i € [m] : Vars(f) C X;(A)} all possible extension
variables (and hence functions) on the variables X;(A): i € [m].

Example
1 0 1

Let A=|0 1 Of. Then Vars(A) is in correspondence with all boolean
1 0 0

functions on a subset of {x,x3} or {x;}.



More definitions...
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Prae Definition (Vars(A) — x)

Complexity

Let C = yjill VeV y;f be a clause on Vars(A). Then
3. Kyle
ICl = £ v v £t

is a boolean function on the variables ¥.

Example

With A as above, let fj =x1 AX3 and f, = xp. Let C = Vi VY, Then

ICll=x1 AX3Vx2=%1 VX3 Vxp



The Functional Encoding

Pseudorandom

Caeetams i Let g1,..., & be functions on ¥ which constitute a generator G,,. Note that
Proof Vars(g;) € X;(A). We encode (1) as follows:

Complexity

Definition (Functional Encoding of NW Generator Hardness)

Fix A. Let ©(A, G,;) denote the collection of clauses of the form
C= y;}ll VeV y;: for which

Vars(fi) C X;(A) i=1,...k and g E|IC]|

T(A, Gy,) is the functional encoding of (1).



The Functional Encoding is Correct

Pseudorandom
Gen;l’ﬂmffs in Theorem (7(A, G;) Corresponds with (1))
I"TOO]
Complexity (A, Gy) is satisfiable < (1) has a mapping that satisfies it.
N. Hayek &
B. Kyle

Proof.

(<) Let x( be a solution to the system

g1(x) =1
gm(xX0) =1

Consider fy € Vars(A). Let p : Vars(A) — {0, 1} be the truth assignment
yr > f(xp)- Let C€ T(A,Gy), ie.

C :ngfll V~-~Vy;: with  Vars(fj) € X;(A) Vj, some i

Since g; £ ||C||, and g;(x3) = 1, we have ||C|| = ffl Ve kagk =1,s0
Ji: figi (x9) = 1. Therefore, p will satisfy yjii, and hence C.




The Functional Encoding is Correct

Pseudorandom
Generators in
Proof
Complexity

Proof.
(=) Let p be an assignment on Vars(A) satisfying (A, G,). Define
Yx,

X=|:

Yx,

Note that the formula x; belong to Vars(A) so long as we have no zero
columns in A (we will impose this later). One can show by induction that
p(yr) = f(x0) as above. Since Vars(g;) C X;(A) and clearly g; F g;, we have

gi € 1(A,G,) as a clause. p is satisfying for 7(A, G,), so p(g;) =1 (as a bit
assignment). But then p(g;) = gi(¥p) = 1, as desired. O



Main Result: 7(A, G,)) Width Bounds in

Resolution

Pseudorandom

Generators in Without yet defining r,s,c € R, (r,s,c)-expanders, or {-robustness, we

o state the following theorem:
Complexity

N. Hayek & Theorem (Width of (A, G;;) in Resolution)
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Let A € My;5,({0,1}) be an (r,s, c)-expander, and let g; be £-robust for
i=1,..,m. Letc+€>s+1. Then
r(c+€—s)

WRes(T(A,Gy)) > Y Q(r)

The foreign terms constitute the “hardness conditions” on A and g;. We
will define the following

(r,s,c)-expanders: these are sparse matrices which generalize
well-connectedness for graphs. In such a way, tight groupings of
variables between base functions are discouraged, preventing
localized contradictions.

{-robust functions g; resist partial assignments.
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Definition ((r, s, c)-expanders)

Let A € My,;%,({0,1}). For a set of rows I C [m], let d4(I) (called the
boundary of I) denote all columns which, when restricted to I, contain
one “1.”

Then, A is called an (r,s, c)-expander if |J;(A)| < s and, for all choices I as
above, |I[| <1+ = [da(I)| = c|I|.

What does this say: first, the number of 1s in any given row is bounded
(by s). This allows sparseness.
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Definition ((r, s, c)-expanders)

v Let A € My,;%,({0,1}). For a set of rows I C [m], let d4(I) (called the
I' \u‘ boundary of I) denote all columns which, when restricted to I, contain
: one “1.”

Then, A is called an (r,s, c)-expander if |J;(A)| < s and, for all choices I as
above, |I[| <1+ = [da(I)| = c|I|.

What does this say: first, the number of 1s in any given row is bounded
(by s). This allows sparseness. Secondly, up to a selectivity threshold (r),
we may lower bound the density (c) of boundary columns in I by a linear
factor.
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Definition ((r, s, c)-expanders)
Let A € My,;%,({0,1}). For a set of rows I C [m], let d4(I) (called the

I' \u‘ boundary of I) denote all columns which, when restricted to I, contain
: one “1.”

Then, A is called an (r,s, c)-expander if |J;(A)| < s and, for all choices I as
above, |I[| <1+ = [da(I)| = c|I|.

What does this say: first, the number of 1s in any given row is bounded
(by s). This allows sparseness. Secondly, up to a selectivity threshold (r),
we may lower bound the density (c) of boundary columns in I by a linear
factor. For instance, a (1, 2,.5)-expander could look like:

1 0 1
0 1 0
1 0 0



Hardness of g; <> {-robustness
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O —— Our hardness condition on g; (and its motivation) is more

_ Proof straight-forward:
Complexity

Definition ({-robustness)

A function g; is called ¢-robust if every assignment p such that
gi(p) €{0,1} (i.e. not *) satisfies |p| > ¢.

In other words, no short assignments satisfy or dissatisfy €. For instance...



Hardness of g; <> {-robustness
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 ———— Our hardness condition on g; (and its motivation) is more

_ Proof straight-forward:
Complexity

Definition ({-robustness)
A function g; is called ¢-robust if every assignment p such that
gi(p) €{0,1} (i.e. not *) satisfies |p| > ¢.

In other words, no short assignments satisfy or dissatisfy €. For instance...

Example

X1 ®x2 ®---®xy, is n-robust, since we need to map all variables to
determine if the sum is =, 1.

Conversely, {1 V -+ V €, is only 1-robust (take the assignment ¢; = 1).

By selecting robust (i.e. large enough ¢) functions, we increase the
number of variable assignments a prover would need to check implicitly
(no shortcuts).



Proof of Theorem: Measure
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Let A € My5,(10,1}) be an (r, s, c)-expander, and let g; be £-robust for

N. Hayek & i=1,..,m. Letc+€>s+1. Then

B. Kyle
r(c+€—s)

wRes(T(A,Gn)) > 27

Proof. We will first define a measure y on clauses.

Definition (u)

For a clause C in Vars(A), p(C) is the size of a minimal I C [m] such that:
(a) Vy; € C3iel: Vars(f) C X;(A)
(b) {giliel}e|Cl

Remark. p is sub-additive: if Cy and Cj resolve to C then
#(C) < u(Cp) + u(Cy). Furthermore, u(C) =1 for C € 7(4, Gy).
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Theorem (Width of (A, G;;) in Resolution)

Let A € My,;5,({0,1}) be an (r, s, c)-expander, and let g; be £-robust for
i=1,..,m. Letc+€>s+1. Then

r(c+€—s)

wRes(T(A,Gn)) > 20

We'll first establish a connection between y(C) and w(C):
medium-y clauses are wide.

We’'ll then show that p(1) is large, and therefore, by our remark,
that any resolution refutation of 7 must contain a medium-y clause
which is wide.



Proof of Theorem: Claim #1

Pseudorand. . . . ..
(f:f:;,of;igi‘? For a clause C in Vars(A), p(C) is the size of a minimal I C [m] such that:

Proof
Complexity (a) Vy; € Cdiel: Vars(f)C X;(A) (b) {gilieI}E]C]|
N. Hayek &

B. Kyle Claim (#1)

r(c+{—s)

For a clause C with 5 < u(C) <r, w(C) > =—

Proof.

Let I satisfy pu(C). Let Iy C I be minimal such that (a) still holds. Then,
for, Iy :=I\1Ip, {g;i :i € I\ k} ¢ ||C|| for any k € I;.

Fix k € I;. We make the sub-claim that |Jx(A) N d(I)] <s—¢. Let a be an
assignment such that g;(a) =1 Vi e I\ k, but ||C||(«) = 0. (This exists by
the above). Then
a(x;) ieda(I)NJi(A)
olxs) = { i) ieda Nk

* otherwise
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* otherwise

Let i # k be arbitrary. We claim that, if x; € Vars(g;), then s € da(I) NJx(A),
and hence p is defined totally on each g;. Let x5 € Vars(g;). Suppose

s € dA(I). Then s is a column in which only one “1” exists. But s € J;(A),
so s & Jx(A) for any k # i (since this would constitute a second “1”). A
similar argument shows that variables x; € ||C|| are such that

s & da(I)NJr(A), with the additional rationale that k & I.

= gilp=1and C|p = 0. By (b), gklp = 0. But g is {-robust:

= #J (A \ [da(l) Nk (A)] = €
= 5-19a(I)NJi(A) 2 € = [daI)N]Jk(A) <s-€



Proof of Theorem: Claim #1
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Complexity To restate: so far, we have, for any k € I1, the inequality

[Pa(I) N i(A) <s—¢

Hence, we sum up

clIf < 12a(I)| by (r,s,c)-properties of A
<) VAN DI+ ) i(A)nda(l)
i€l i€l
< ZU:’(AH +(s=0)|I]| by sub-claim above
iGIO
<sllol+ (s = O] by prop of A (sparseness)
= (s= O+ €lIol

< (s=O)I|+ € w(C)



Proof of Theorem: Claim #1

Pseudorandom
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Proof

Complienily In this last step, we use |Iy| < w(C). Recall that I C I is minimal such that

N. Hayek &

B. Kyle (a) Vy; € C3iel: Vars(f) C X;(A)

But then Iy C {i : Vars(f) C X; for some f < y;i € C}, and the magnitude
of this set is bounded by {f < y}?}, which is bounded by w(C).

To restate: c|I| < (s = O)|I|+¢-w(C). But |I| = u(C) > § by assumption, so
(c+l=s)|I| _ r(c+l—s)
This is the bulk of our theorem! Now that we have shown that medium-y

clauses attain our width bound, we just need to show they exist in a
resolution proof.



Proof of Theorem: Claim #2
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Proof Claim (#2)

Complexity

Any resolution refutation I1 of T contains a clause C with & < u(C) <r.

Proof.
We first show (L) > r. Suppose not: (L) <r.

Then we arrive at the same inequalities, i.e. c¢-[I| < (s—£)|I|+¢|Ip]

This time, I is empty, and we get ¢ <s—I. But the expansion property
wasthatc>s—€+1 x

Now, since I'T derives L from clauses C; in T with y(C;) =1, and p is
sub-additive, we are done. O



Putting It All Together

Pseudorandom

 ———— Adding Claim 1 with Claim 2 completes our lower bound on resolution
COP;"l‘e‘f,u width: (c+ts)

m X1 " r C + _ S
N WRes(T(4,Gp)) > 2

[}

Later in the paper, it is shown that nearly all matrices satisfy ¢ > 0.9s,
and that most functions satisfy € > 0.9s. Observe that when this is true,
our bound is linear in 7.

Wres(T(A,Gy)) = Q(r)

Note that r is bounded above my , but can be taken to be roughly %.
This width lower-bound to a strong size-lower bound by the known
relation from class. In Section 4 of the paper, the method of random
restriction in Polynomial Calculus is used to extend a width lower bound
to a size one. The results are stronger bounds on the weaker linear
encoding.
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Corollary

Let € > 0 be an arbitrary fixed constant, A be an (r,s, es)-expander of size
(mxn), and g1,...,gm be (1 —&/2)s-robust functions. Then every resolution

22

refutation of T(A, g) must have size exp(Q( T




Concluding Remarks

1dorandom

Generators in m We have strong lower bounds for both resolution and algebraic
Complexity systems in refuting (1), and the authors believe the same for

N. Havek & stronger systems.

m These strong lower bounds on proving these tautologies imply even
stronger lower bounds on breaking the generator itself, further
affirming the strength of Nisan’s and Wigderson’s construction.

m For proof systems P with the Efficient Interpolation Property, there
is an easy way of converting any computationally secure generator
to another generator which is hard for P. But in general no such
method exists.



